The **magnetic field strength** at point 1 in the **figure **will be **6.67 ×10⁻⁵ T.**

### What is magnetic field strength?

The number of **magnetic flux lines** on a unit area passing **perpendicular **to the given line direction is known as** induced magnetic field strength** .it is denoted by** B.**

The **magnetic field strength** is found as;

[tex]B = \frac{\mu_0I}{2r} \\\\ \mu_0 = 4 \PI \times 10^{-7}[/tex]

In the formula,I denote **current**, and r **denotes **the **distance **between the point and the **current **carrying **wire **and **magnetic field **due to current in the bottom **wire.**

At point 1, the **net magnetic field **is found as the sum of **magnetic field **due to current in the top **wire.**

[tex]\rm B_{net} = B1_+(-B_2)[/tex]

[tex]B = \frac{ 4 \PI \times 10^{-7}I}{2r} \\\\ \rm B_{net} = B_1_+(-B_2)\\\\ \rm B_{net} = \frac{4 \times \pi \times 10^{-7} \times 10}{2 \times \pi \times 0.02} -\frac{4 \times \pi \times 10^{-7} \times 10 }{2 \times \pi \times 0.06} \\\\\ \rm B_{net} = 6.67 \times 10^{-5} T[/tex]

Hence, the **magnetic field strength** at point 1 in the figure will be **6.67 ×10⁻⁵ T.**

#SPJ4