Question
Mathematics
1. $11{x}^{2}-165x$11x^(2)-165 x
2. $4n{a}^{2}-20nab$4na^(2)-20 nab
$45{h}^{3}k-20{h}^{2}{k}^{2}+100hk$45h^(3)k-20h^(2)k^(2)+100 hk
$5\cdot 3\cdot {p}^{4}+15{p}^{2}+6p$5*3*p^(4)+15p^(2)+6p
Solve problem with AI
1. Answer: $11{x}^{2}-165x=11x\left(x-15\right)$11x^(2)-165 x=11 x(x-15).
Step-by-step solution:
• Take out the common factor, 11x:
$11x\left(x-15\right)$11 x(x-15).
1. Answer: $4n{a}^{2}-20nab=4na\left(a-b\right)$4na^(2)-20 nab=4na(a-b).
Step-by-step solution:
• Take out the common factor, $4na$4na:
$4na\left(a-b\right)$4na(a-b).
• Simplify the expression by factoring out $\left(a-b\right)$(a-b):
$4na\left(a-b\right)$4na(a-b).
1. Answer: $45{h}^{3}k-20{h}^{2}{k}^{2}+100hk=5hk\left(9{h}^{2}-4hk+20\right)$45h^(3)k-20h^(2)k^(2)+100 hk=5hk(9h^(2)-4hk+20).
Step-by-step solution:
• Take out the common factor, $5hk$5hk:
$5hk\left(9{h}^{2}-4hk+20\right)$5hk(9h^(2)-4hk+20).
• There are no further simplifications, so we stop here.
1. Answer: $5\cdot 3\cdot {p}^{4}+15{p}^{2}+6p=15p\left({p}^{4}+1\right)+6p$5*3*p^(4)+15p^(2)+6p=15 p(p^(4)+1)+6p.
Step-by-step solution:
• Take out the common factor, $3p$3p:
$3p\left(5{p}^{4}+5{p}^{2}+2\right)$3p(5p^(4)+5p^(2)+2).
• Simplify the expression inside the parentheses by factoring out ${p}^{2}$p^(2):
$3p\left(5{p}^{2}\left({p}^{2}+1\right)+2\right)$3p(5p^(2)(p^(2)+1)+2).
• Simplify again by factoring out ${p}^{2}+1$p^(2)+1:
$3p\left({p}^{2}+1\right)\left(5{p}^{2}+2\right)$3p(p^(2)+1)(5p^(2)+2).
• There are no further simplifications, so we stop here.
You might be interested in...
Explore more...