Question
Mathematics
1. Subtract in binary.
B. ${1100}_{2}$1100_(2)
b. ${11010}_{2}$11010_(2)
c. ${1101}_{2}$1101_(2)
$-{101}_{2}$-101_(2)
$-{1011}_{2}$-1011_(2)
$-{1001111}_{1}$-1001111_(1)
d. ${101}_{2}$101_(2)
Solve problem with AI
b. ${11010}_{2}$11010_(2) - ${101}_{2}$101_(2) = ${10101}_{2}$10101_(2)
c. ${1101}_{2}$1101_(2) - ${1010}_{2}$1010_(2) = ${11}_{2}$11_(2)
d. ${101}_{2}$101_(2) - ${0}_{2}$0_(2) = ${101}_{2}$101_(2)
$\overline{)\begin{array}{r}{1100}_{2}\\ \\ -{101}_{2}\\ \end{array}}$1100_(2)--101_(2) can be solved as follows:
$\begin{array}{rl}& \phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}1\phantom{\rule{thinmathspace}{0ex}}1\phantom{\rule{thinmathspace}{0ex}}0\phantom{\rule{thinmathspace}{0ex}}{0}_{\phantom{\rule{thinmathspace}{0ex}}2}\\ \\ -& \phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}1\phantom{\rule{thinmathspace}{0ex}}0\phantom{\rule{thinmathspace}{0ex}}{1}_{\phantom{\rule{thinmathspace}{0ex}}2}\\ \\ & \phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}1\phantom{\rule{thinmathspace}{0ex}}0\phantom{\rule{thinmathspace}{0ex}}{0}_{\phantom{\rule{thinmathspace}{0ex}}2}\end{array}${:[,1100_(2)],[],[-,101_(2)],[],[,100_(2)]:}
You might be interested in...
Explore more...